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Using Monte Carlo simulations of the Lebwohl-Lasher model we study the director ordering in a nematic
cell where the top and bottom surfaces are patterned with a lattice of �1 point topological defects of lattice
spacing a. As expected on general physical grounds we find that the nematic order depends on the ratio of the
height of the cell H to a. For thick cells �H /a�0.9� we find that the system is very well ordered and the
frustration induced by the lattice of defects is relieved in a novel way by a network of half-integer defect lines
which emerge from the point defects and hug the top and bottom surfaces of the cell. When H /a�0.9 the
system has zero nematic order parameter and the half-integer defect lines thread through the cell joining point
defects on the top and bottom surfaces. We present a simple physical argument in terms of the length of the
defect lines to explain these results. To facilitate eventual comparison with experimental systems we also
simulate optical textures in the presence of crossed polarizers.

DOI: 10.1103/PhysRevE.77.021701 PACS number�s�: 61.30.Hn, 61.30.Jf, 61.30.Gd

I. INTRODUCTION

The use of nematic liquid crystals in display devices re-
quires alignment of the liquid crystal on the surfaces that
bound the top and bottom of the display cell. Traditionally
this alignment is achieved by rubbing the polyimide align-
ment layers with a velvet cloth. However, this approach leads
to contamination and thus there has been considerable effort
devoted to achieving alignment via noncontact means,
among them the use of linear photopolymerizable polymers
�1–3�. One way to achieve director alignment with the poly-
mer is to irradiate it with UV light which polymerizes the
material along the local direction of polarization of the light
�4–6�. When the nematic material comes in direct contact
with the polymer layer subsequent to the UV exposure, the
nematic director is planar aligned locally along the direction
of the polymer chains. Not only does this alignment process
reduce contamination, it also allows for the creation of spa-
tially modulated alignment patterns when the polymeric ma-
terial is exposed to holographically generated polarization
interference patterns. Depending on the optics used to gen-
erate the interference pattern the modulation can be either
one- �7� or two dimensional �8� in nature. The two-
dimensional patterns include an ordered array of point topo-
logical defects shown in Fig. 1, where +1 and −1 defects
occupy interpenetrating square lattices of lattice constant a
�9�. While the net topological charge of the alignment layer
shown in the figure is zero, the pattern introduces frustration
and one can ask what the nature of the nematic order in a cell
whose alignment surfaces on the top and bottom look similar
to this. Energy considerations require that the point defects
on the alignment layers lie on defect lines that penetrate into
the nematic. Do these lines thread through the cell joining
point defects on opposite sides, or is another geometry pos-
sible? Can this cell exhibit net nematic order given the frus-

tration induced by the boundaries? In this paper we answer
these questions using Monte Carlo simulations.

II. SIMULATIONS

We model the nematic cell using the Lebwohl-Lasher
model �10�, a lattice model of rotors specified by unit vectors
si located at sites i of a cubic lattice. Each rotor represents a
small group of mesogenic molecules. The model is very well
suited to numerical studies of the director structure of nem-
atic liquid crystals. It has been intensively investigated using
Monte Carlo techniques since its introduction �11–14�, in-
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FIG. 1. �Color online� Schematic of a patterned alignment layer
created with linear photopolymerizable polymers and a suitable ho-
lographic interference pattern. Nematic molecules brought into con-
tact with this surface will align with the rods which indicate the
local direction of the polymer chains. This pattern consists of two
interpenetrating square lattices of +1 and −1 point defects with
lattice spacing a=10. The +1 and −1 defects are located at coordi-
nates x=n a

2 ,y=m a
2 ; n ,m=1,3 ,5 , . . ., and x=ka ,y= la; k , l

=0,1 ,2 , . . . respectively.
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cluding applications to nematic cells and display devices
�15,16�. The model is defined by the Hamiltonian

H = − J�
�ij�
�3

2
„si · s j…

2 −
1

2
	 ,

where the sum is over nearest neighbors and J is a coupling
parameter. We consider a nematic cell of size L�L in the x-y
plane and height H along the z axis. The patterned alignment
layers are located at z=0 and z=H−1, and we assume infi-
nitely strong anchoring of the rotors on these layers. The two
alignment layers, each of the structure shown in Fig. 1, are
assumed to be identical and in registry with each other, con-
sistent with the experimental fabrication process where the
cell is assembled prior to the holographic exposure and in-
troduction of the nematic material �6�. Periodic boundary
conditions are imposed on the remaining four faces of the
cell. We carried out our simulations at a temperature T=0.1,

measured in dimensionless units of J /kB. We initialized the
system with a random configuration of rotor orientations
�consistent with the experimental procedure where the nem-
atic is introduced into the cell in the isotropic phase and then
cooled� and ran simulations for 50 000 Monte Carlo cycles
where each cycle corresponds to attempted rotations of N
=L2H rotors chosen at random. Our largest systems equili-
brated in less than 25 000 cycles. We implemented the at-
tempted rotations via random displacements of � and
cos �,where � and � are the spherical coordinates of a rotor.
The ranges of these random displacements were chosen to be
−0.025�cos ��0.025 and −0.25���0.25. These choices
allowed us to achieve a Monte Carlo acceptance ratio of
approximately 50%.

We carried out simulations for a=10,20,22 and H
=4,6 ,8 ,10,12,14,16,17,18,19,20,40, with selected com-
binations of these parameters yielding values of the ratio
H /a ranging from 0.2 to 4. We chose L=40 for a=10,20 and
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FIG. 2. �Color online� Director patterns in three layers of a cell of size L=40, H=40 with defect lattice spacing a=20. The two identical
patterned layers �z=0,39� are displayed in �a�. Layer z=1, shown in �b�, illustrates the bifurcation of the integer-valued point defects on the
patterned surfaces into pairs of half-integer defect lines. Deeper in the cell ��c� ,z=4, �d� ,z=20�, the defect lines are not present and very
uniform nematic order exists along a diagonal direction in the x-y plane.
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L=44 for a=22 so that our simulation box contains at least
four unit cells of the pattern �though we did do some runs
with L as large as 80 to check the robustness of our results�.
We considered several ways of modeling the core of the
defects, either placing a rotor pointing in the z direction at
the center of the core, or arranging the rotors of the Lebwohl-
Lasher lattice so that the core is centered on a plaquette of
the lattice, i.e., there are no lattice sites allocated to the core.
Our key results are independent of how we model the core.
Our results indicate that the equilibrium state of the system
depends crucially on the ratio H /a.

�i� When H /a�0.9 we find that the system is very well-
ordered �with a nematic order parameter S
0.95 averaged
over the entire cell excluding the boundary layers� along one
of the two diagonal directions in the x-y plane �the two di-
agonal directions are equivalent and the system chooses one
or the other depending on the seed of the Monte Carlo algo-
rithm�. The nematic order is locally very uniform for 1�z
�H−2 as illustrated in Fig. 2. The �1 defect points on the
patterned surfaces bifurcate into half-integer defect lines
�identified using the method of Ref. �17�� which hug the
patterned surfaces as indicated in Fig. 3. As shown in the
figure a half-integer line emerging from a +1 defect on the
surface links up with one of the half-integer lines emerging
from a neighboring −1 defect on the same patterned surface
�note that +1 /2 and −1 /2 defect lines are topologically
equivalent in a nematic�, thus forming diagonal chains of
half-integer defect lines. The nematic director undergoes a
90° rotation as a half-integer line is crossed. In this way the
defect lines mediate the transition of the director orientation
from uniform diagonal order within the center of the cell to
the patterned array of integer defects on the alignment layers.

�ii� When H /a�0.9 the nematic order parameter van-
ishes. The defect points on the surfaces once again bifurcate
into half-integer lines in the interior of the cell but these lines
now thread through the cell, i.e., a half-integer line from a +1
defect on one surface links up with a line emerging from the
+1 defect located on the other surface at the same point in
the x-y plane �the −1 defects are linked in a similar fashion�.
See Figs. 4 and 5. We do not see any evidence of integer-
valued lines threading through the sample. Only pairs of
half-integer lines which have bifurcated from the �1 defects
on the surfaces are present �18�, and we found no evidence of
“escape in the third dimension” �19,20� in these samples; the
rotors have negligible tilt out of the x-y plane. This result
makes sense given that the boundary layers are patterned
with defects. When defect lines “escape,” uniform nematic
order is created along the z axis, the third dimension. Creat-
ing uniform order along the z direction in the interior of our
cell would yield a 90� mismatch with all of rotors on the
boundaries. Instead, the system can order uniformly in the
x–y plane as we have seen, yielding a 90° mismatch just
along the diagonal directions of the boundaries. Thus, there
is no energetic reason for the defect lines to escape, unless a
field is applied along the z direction.

We bounded our estimate of the critical value of H /a by
simulating systems with H=20, a=22, H /a=0.91 and H
=18, a=20, H /a=0.90. The former yields behavior �i�
above, while the latter yields behavior �ii�.

The significance of the value of the ratio H /a in determin-
ing the equilibrium state can be understood in very simple

physical terms. If a defect line crosses the cell parallel to the
z axis, joining defects of similar charge on opposite patterned
surfaces, then the defect line length will be of order H �it will
be exactly H if the line is perfectly straight�. If the line in-
stead hugs the surface as in Fig. 3 and links up with a line
emerging from a neighboring defect point of opposite charge,
then the line length will be of order a �21� �exactly a if the
line does not wander�. This simple argument suggests that
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FIG. 3. �Color online� Half-integer valued defect lines in a cell
of size L=40, H=40 with defect lattice spacing a=20. The lines
have been identified using the method of Ref. �17�. The full cell is
shown in �a� and a top view �looking down the z axis� is shown in
�b�. The defect lines emerge from the integer-valued point defects
on the patterned boundary layers located at z=0,39. Each defect
line joins a pair of oppositely charged point defects on the same
boundary layer. The nematic is ordered along the same diagonal
direction followed by the defect lines shown in �b�; compare with
Fig. 2�d�.
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the critical value of the ratio H /a should be 1; our simula-
tions yield a value of approximately 0.9.

An eventual comparison of our results requires informa-
tion about the transmission of light through the cell. To this
end, we simulated polarized optical textures using the Müller
matrix technique �22,23�. We simulated a pair of crossed
polarizers, one on either side of the cell, one along the x axis,
the other along the y axis. In Fig. 6 we display results for the
two systems shown in Figs. 2–5. These results are consistent
with the descriptions of the nematic ordering and defect line
geometry described above for the two states, one with H /a
�0.9, the other with H /a�0.9. In the former case �Fig.
6�a�� we see a diagonal light pattern corresponding to the
strong nematic ordering along a diagonal direction in the x-y
plane, with the bright stripes in the pattern oriented perpen-
dicular to the direction of the nematic order. In the latter
case, corresponding to Fig. 6�b�, the defect lines thread
through the cell. Because the pair of half-integer lines join-

ing two integer-valued defects are closely spaced together
they appear in the optical pattern similar to a +1 defect with
a large core.

III. CONCLUSIONS

Using Monte Carlo simulations of the Lebwohl-Lasher
model we have studied nematic order in a cell whose top and
bottom layers are patterned with a regular array of �1 point
topological defects. We found that the nematic order in the
cell depends crucially on the ratio of the height of the cell H
to the lattice spacing a of the defects. When H /a�0.9 the
system is very well ordered in spite of the frustration induced
by the lattice of defects. This frustration is relieved by a
network of half-integer defect lines which emerge from the
point defects and hug the top and bottom surfaces of the cell.
Within the interior of the cell the director is remarkably uni-
form and points along one of the diagonal directions in the
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FIG. 4. �Color online� Director patterns in three layers of a cell of size L=40, H=6 with defect lattice spacing a=20. The two identical
patterned layers �z=0,5� are displayed in �a�. Layers z=1 and z=3, shown in �b� and �c�, respectively, illustrate the bifurcation of the
integer-valued point defects on the patterned surfaces into pairs of half-integer defect lines which traverse the cell in the z direction, joining
integer defects on opposite sides of the cell �see Fig. 5�.
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x-y plane. When H /a�0.9 the nematic order parameter of
the system vanishes and the half-integer defect lines thread
through the cell joining point defects on opposite surfaces.
The dependence of the ordering on the ratio H /a and its
approximate value can be understood in terms of minimiza-
tion of the length of the defect lines joining the point defects.
An individual defect line has length approximately H if the
line traverses the cell from top to bottom and approximately
a if it joins defects on the same surface �the length will be
exactly these values if the line is as straight as possible�.
Thus, when H�a the system can minimize the defect line
energy by joining defects on the same surface, whereas if
H�a, the defect line energy is minimized by having the
lines traverse the height of the cell.

The Lebwohl-Lasher model assumes a single Frank elas-
tic constant proportional to the coupling J. When the defect
lines traverse the height of the cell for small H, the defect
energy is determined primarily by the bend elastic constant
K3, whereas when the lines hug the surfaces for large values
of H, it is the twist elastic constant K2 which determines the
defect energy. Thus, in a more realistic model where K2
�K3 �24�, we might expect that the critical value of H /a will
be smaller than the value of 0.9 found here for the Lebwohl-
Lasher model.

It is experimentally feasible �9� to fabricate a cell with
alignment layers of the form considered here. While it is not

easy experimentally to vary H, the cell gap, it is possible to
vary a by suitable manipulation of the optical beams used to
create the interference pattern. Preliminary estimates suggest
that it should be possible to vary a from 1 to 3 	m. With a
typical cell gap H of 2 	m this would allow H /a to range
from 2 to 0.66. Assuming that our estimate 0.9 of the critical
value of this ratio from the Lebwohl-Lasher model is reason-
ably close to the value for real materials, we would expect
that the behavior shown in Fig. 6 could be seen experimen-
tally.
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FIG. 5. �Color online� Full cell view of the half-integer valued
defect lines in a cell of size L=40, H=6 with defect lattice spacing
a=20. The defect lines emerge from the point defects on the pat-
terned boundary layers located at z=0,5 and traverse the cell join-
ing like-charged point defects on opposite sides.
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FIG. 6. Simulated polarized optical textures for two nematic
cells: �a� H=40 �see Figs. 2 and 3� and �b� H=6 �see Figs. 4 and 5�,
both with L=40 and defect lattice spacing a=20.
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